Natural Compound in Basil May Protect Against Alzheimer’s Disease

Health

SciTechDaily 07 October, 2021 - 07:25am 8 views

It was only in the 1980s, after all, that two Australian scientists found that Helicobacter Pylori triggers stomach ulcers. Before that, doctors had blamed the condition on stress, cigarettes and booze. Contemporary scientists considered the idea to be "preposterous", yet it eventually earned the Nobel Prize for Physiology or Medicine in 2005.

The discovery that the human papillomavirus can cause cervical cancer proved to be similarly controversial, but vaccines against the infection are now saving thousands of lives. Scientists today estimate that around 12% of all human cancers are caused by viruses.

We may be witnessing a similar revolution in our understanding of Alzheimer's disease. Lifestyle and genetic factors certainly play a role in the development of the illness. But it looks increasingly possible that some common viruses and bacteria – the kinds that give us cold sores and gum disease – may, over the long term, trigger the death of neural tissue and a steady cognitive decline. If so, infections may be one of the leading causes of the dementia.

Like the germ theories of ulcers and cancers, this hypothesis was once considered a kind of heresy – yet a string of compelling findings has sparked renewed interest in microbes' contributions to dementia. "There's a huge amount of work being done now, compared to even five years ago," says Ruth Itzhaki, an emeritus professor at the University of Manchester in the UK, who has spent three decades investigating the role of infection in Alzheimer's.

The hypothesis has inspired a clinical trial of a drug that could target the infection before it decimates the brain, radically reducing the risk of senility in old age. And there may soon be many other exciting new treatments in the pipeline.

A new understanding of Alzheimer's disease could not come soon enough. While there are many forms of dementia, Alzheimer's causes around 60-70% of cases. Globally, that amounts to around seven million people who have been newly diagnosed every year, who desperately need new treatments to slow their decline.

The disease takes its name from the German doctor Alois Alzheimer. In 1906, he noted the build-up of plaques in the brain of a 55-year-old woman, Auguste Deter, who had been suffering from memory decline, language problems and unpredictable behaviour. We now know that these plaques are made from a protein called amyloid beta, and they are thought to be toxic to brain cells and impair the synaptic connections that are important for neural signalling. The accumulation of amyloid beta plaques may also cause tangles of another protein, tau, to build within cells, which can itself lead to neuronal death, and it appears to be accompanied by widespread inflammation in the brain, which adds to the damage.

The "amyloid beta hypothesis" has inspired countless trials of drugs that aimed to break up these toxic plaques. Yet this research has ended in many disappointments, without producing the desired improvements in patients' prognosis. This has led some to wonder whether the amyloid beta hypothesis may be missing an important part of the story. "The plaques that Alzheimer observed are the manifestation of the disease, not the cause," says geriatrics scientist Tamas Fulop at the University of Sherbrooke in Canada.

Scientists studying Alzheimer's have also struggled to explain why some people develop the disease while others don't. Genetic studies show that the presence of a gene variant – APOE4 – can vastly increase someone's chances of building the amyloid plaques and developing the disease. But the gene variant does not seal someone's fate as many people carry APOE4 but don't suffer from serious neurodegeneration. Some environmental factors must be necessary to set off the genetic time bomb, prompting the build-up of the toxic plaques and protein tangles.

Could certain microbes act as a trigger? That's the central premise of the infection hypothesis.

Itzhaki has led the way with her examinations into the role of the herpes simplex virus (HSV1), which is most famous for causing cold sores on the skin around the mouth. Importantly, the virus is known to lie dormant for years, until times of stress or ill health, when it can become reactivated – leading to a new outbreak of the characteristic blisters.

While it had long been known that the virus could infect the brain – leading to a dangerous swelling called encephalitis that required immediate treatment – this was thought to be a very rare event. In the early 1990s, however, Itzhaki's examinations of post-mortem tissue revealed that a surprising number of people showed signs of HSV1 in their neural tissue, without having suffered from encephalitis.

Importantly, the virus didn't seem to be a risk for the people without the APOE4 gene variant, most of whom did not develop dementia. Nor did the presence of APOE4 make much difference to the risk of people without the infection. Instead, it was the combination of the two that proved to be important. Overall, Itzhaki estimates that the two risk factors make it 12 times more likely that someone will develop Alzheimer's, compared to people without the gene variant or the latent infection in their brain.

Itzhaki hypothesised that this was due to repeated reactivation of the latent virus – which, during each bout, invades the brain and somehow triggers the production of amyloid beta, until eventually, people start to show the cognitive decline that marks the onset of dementia. "I think there has to be repeated activation and accumulated damage to explain the long-term course of the disease."

Itzhaki says that her findings were met with a high degree of scepticism by other scientists. "We had the most awful trouble getting it published." Many assumed that the experiments were somehow contaminated, she says, leading to an illusory result. Yet she had been careful to avoid this possibility, and the apparent link between HSV1 infection and Alzheimer's disease has now been replicated in many different populations.

One paper, published earlier this year, examined cohorts from Bordeaux, Dijon, Montpellier and rural France. By tracking certain antibodies, they were able to detect who had been infected with the herpes simplex virus.  The researchers found that the infection roughly tripled the risk of developing Alzheimer's in APOE4 carriers over a seven-year follow-up period – but had no effect in people who were not carrying the gene. "The herpes virus was only able to have a deleterious effect if there was APOE4," says Catherine Helmer at the University of Bordeaux in France, who conducted the research.

To date, the most compelling evidence for the infection hypothesis comes from a large study in Taiwan, published in 2018, which looked at the progress of 8,362 people carrying a herpes simplex virus. Crucially, some of the participants were given antiviral drugs to treat the infection. As the infection hypothesis predicted, this reduced the risk of dementia. Overall, those taking a long course of medication were around 90% less likely to develop dementia over the 10-year study period than the participants who had not received any treatment for their infection.

"It's a result that is so striking, it's hard to believe," says Anthony Komaroff, a professor at Harvard Medical School and a senior physician at Brigham and Women's Hospital in Boston, who recently reviewed the current state of the research into the infection hypothesis for the Journal of the American Medical Association. Although he remains cautious about lending too much confidence to any single study, he is now convinced that the idea demands more attention. "It's such a dramatic result that it must be taken seriously," he says.

Komaroff knows of no theoretical objections to the theory. "I haven't heard anyone, even world-class Alzheimer's experts who are dubious about the infection hypothesis, give a good reason why it has to be bunkum," he adds. We simply need more studies providing direct evidence for the link, he says, to be able to convince the sceptics.

As interest in the infection hypothesis has grown, scientists have started to investigate whether any other pathogens may trigger a similar response – with some intriguing conclusions. A 2017 study suggested that the virus behind shingles and chickenpox can moderately increase the risk of Alzheimer's disease. There is also evidence that Porphyromonas gingivalis, the bacterium behind gum disease, can trigger the accumulation of amyloid beta, which may explain why poor dental health predicts people's cognitive decline in old age. Certain fungi may even penetrate the brain and trigger neurodegeneration. If the causal role of these microbes is confirmed, then each finding could inspire new treatments for the disease.

Scientists studying the infection hypothesis have also started making some headway in explaining the physiological mechanisms.

Their explanation centres on the surprising discovery that amyloid beta can act as a kind of microbicide that fights pathogens in the brain. Studies by Fulop and others, for instance, show that the protein can bind to the surface of the herpes simplex virus. This seems to entrap the pathogen with a web of tiny fibres and prevents it from attaching to cells.

In the short term, this could be highly advantageous, preventing the infection from spiralling out of control so that it poses an immediate danger to someone's life. But if the pathogen is repeatedly reactivated during times of stress, the amyloid beta could accumulate in the toxic plaques, harming the cells it is meant to be protecting.

How the APOE4 gene variant fits into this process remains to be discovered. Perhaps it changes our cells' susceptibility to an infection. Or perhaps it impairs the clean-up and repair of the neural damage after the pathogen has been deactivated. Either way, the consequence would be increased neural degeneration.

It may seem strange that humans would have evolved a defence system that could backfire in this way. But the risk of developing Alzheimer's later in life – after we've already had a chance to reproduce – would have been far less important for the survival of our species than the immediate risk of a full-blown brain infection during our youth. "If amyloid beta is evolutionarily conserved, it probably has some function that's good for the preservation of the species – and protecting against infections in the brain would certainly qualify as such a function," says Komaroff. We may now be living with the consequences of a trade-off between the immediate, short-term protection and the long-term risk of chronic illness.

During the current pandemic, some scientists have started to worry that the coronavirus could increase the risk of dementia. As scientists from Mount Sinai School of Medicine, New York warned in the Journal of Alzheimer's Disease last year: "It is possible that there may be an existing population who have become unknowingly predisposed to neurodegeneration through silent viral entry into the brain."

So far there are some signs that Covid infections can bring about neural damage. Researchers at a recent meeting of the Alzheimer's Association, for example, presented an analysis of blood samples taken from otherwise healthy patients recovering from Covid. They found elevated levels of signature chemicals that often accompany the onset of Alzheimer's disease.

This could just be another consequence of the overall assault on the body, including the increased inflammation that comes with the disease. But some animal studies and analyses of human autopsies suggest that the coronavirus can invade the brain. And laboratory experiments suggest that this infection may, in turn, trigger neural damage. In one striking study, Jay Gopalakrishnan at Heinrich-Heine-University in Dusseldorf and colleagues created a series of "cerebral organoids" – miniature, lab-grown brain tissue – and then exposed them to the virus. They saw some marked changes in the tau proteins that are associated with Alzheimer's, and increased neural death, after infection from the virus.

Such findings ring alarm bells for Fulop. "Sars-Cov-2 may act exactly as HSV-1," he proposes. Others – including Gopalakrishnan – are more cautious, however. "We have demonstrated that the virus can infect human neurons, and it can cause some sort of neuronal stress," he says. "And this may have some unexpected effects." Much more research will be necessary to assess any long-term risks for neurological disease.

Three decades after her initial investigations, Itzhaki hopes we will now see the development of more clinical trials testing new treatments, in a bid to replicate the observations of the HSV1 patients receiving antiviral medication in Taiwan.

One study in New York is already investigating the use of the anti-herpetic medication valacyclovir on patients with mild Alzheimer's disease. The participants are set to undergo a series of cognitive tests after 52 and 78 weeks. If those receiving the drug experience a slower decline in performance than those receiving a placebo, it will provide some compelling evidence for the efficacy of the treatment – and the infection hypothesis more generally. "It's the first trial of its kind," says Itzhaki.

If antiviral drugs do prove to be effective, they could offer protection to an enormous number of people. Itzhaki calculates that around 18% of people aged 30-40 have the APOE4 gene variant, and also carry a latent HSV1 infection, putting them at the much-heightened risk of Alzheimer's in the decades ahead.

The success of anti-herpetic drugs could also spur efforts to treat the many other kinds of infections that may also contribute to Alzheimer's risk in certain patients. Eventually, doctors may be able to screen people according to the many different microbes they may be carrying in their brains – and control the infections before they have time to cause serious damage.

During our conversation, Itzhaki repeatedly expresses her frustration that progress hasn't come sooner. If these treatments help a fraction of the seven million people developing Alzheimer's disease every year, they would have an enormous impact on world health. 

"After these 30 years of difficulties getting funding and getting published, it strikes me very often how many people might have benefited if these treatments had been tested earlier," she says. "I feel so strongly about that."

Read full article at SciTechDaily

Dementia: Signs in your speech and writing which may signal the condition

Express 07 October, 2021 - 12:10pm

Different types of dementia can affect people differently, and everyone will experience symptoms in their own way. Some people with dementia may face new problems with words in speaking or writing. You could be at risk of the neurodegenerative condition if you develop difficulties with your vocabulary.

“They may stop in the middle of a conversation and have no idea how to continue or they may repeat themselves,” the charity states.

People with dementia may also struggle with vocabulary, have problems finding the right word or call things by the wrong name.

“Just because you think you may be experiencing some of the signs, does not necessarily mean that you have dementia,” the site adds.

The NHS also adds that there are many other common symptoms that may appear some time before a diagnosis of dementia.

As well as memory loss, some people may experience difficulty concentrating and find it more difficult to carry out familiar daily tasks.

Others may find themselves being confused about time and place and experiencing mood changes.

“These symptoms are often mild and may get worse only very gradually,” says the NHS.

The NHS adds: “Because people with dementia may lose the ability to remember events, or not fully understand their environment or situations, it can seem as if they're not telling the truth or are wilfully ignoring problems.”

The most common cause of dementia is Alzheimer's disease.

Common symptoms of Alzheimer's disease also include difficulty with numbers and handling money in shops or becoming more withdrawn or anxious.

Alzheimer's disease accounts for 60 to 80 percent of cases, according to the Alzheimer's Association.

Alzheimer's can also cause the person to lose interest in activities they once enjoyed.

Research shows there are more than 850,000 people in the UK who have dementia.

One in 14 people over the age of 65 have dementia, and the condition affects one in six people over 80.

One of the biggest risk factors for developing Alzheimer's disease is being over the age of 65.

As people are living longer nowadays, it is perhaps not surprising that a rise in the number of cases are predicted.

It is estimated that by 2025, the number of people with dementia in the UK will be more than one million.

If you have any concerns about the symptoms, contact your GP and arrange an appointment, says the NHS.

This Popular Herb Could Help Prevent Alzheimer's, New Study Finds

Yahoo Lifestyle 07 October, 2021 - 12:10pm

A new study published in Frontiers in Aging Neuroscience reveals that fenchol, a naturally occurring compound found in basil, may have a protective effect against Alzheimer's disease.

RELATED: This One Herb Can Block Fat, New Study Says

Researchers from the University of South Florida Health (USF Health) found that among a group of 15 compounds studied, fenchol was the most effective at binding to and activating cell-signaling molecule free fatty acid receptor 2 (FFAR2), which is expressed on neurons in the brain. In animal models, fenchol was found to increase FFAR2 signaling, thus reducing levels of amyloid-beta (Aβ), a protein linked to the development of Alzheimer's disease, lowering rates of neuron death, and reducing the number of senescent neuronal cells, AKA "zombie" cells, which are frequently found in the brains of Alzheimer's patients.

"Fenchol actually affects the two related mechanisms of senescence and proteolysis," explained the study's lead author Hariom Yadav, Ph.D., a professor of neurosurgery and brain repair at the USF Health Morsani College of Medicine, in a statement. "It reduces the formation of half-dead zombie neuronal cells and also increases the degradation of (nonfunctioning) Aβ, so that amyloid protein is cleared from the brain much faster."

However, that doesn't mean you should start planning your entire menu around pesto and Caprese salads just yet. Yadav's team says that more research is required to determine the most effective way to deliver doses of fenchol to those seeking protection against cognitive decline.

"We also want to know whether a potent dose of either basil or fenchol would be a quicker way to get the compound into the brain," Yadav explained.

For now, however, it certainly doesn't hurt to enjoy some basil with your meals if you want a bit of a brain boost—the results of a study published in Ancient Science of Life found that mice given basil extract showed improved memory retention, suggesting potential applications for human health, as well.

For more easy ways to make your meals healthier and more flavorful, check out these 17 Herbs to Try for Mind and Body Benefits, Says Science, and for the latest healthy eating news delivered to your inbox, sign up for our newsletter!

Bennett's family revealed to AARP in February that the singer had been diagnosed with Alzheimer's disease in 2016.

Tony Bennett recognized Lady Gaga on stage during a CBS special concert, amidst his battle with Alzheimer's Disease. It was the 95-year-old's final performance.

According to a study published in Hypertension, taking steps to prevent high blood pressure at a younger age is extremely important for reducing your risk for dementia as you age.

'Straight-up miracle juice': Over 35,000 Amazon shoppers are obsessed. Smell ya later!

Save 45 percent on the shoes 16,000 — yes, 16,000! — shoppers adore.

The eufy BoostIQ RoboVac 30C is smart, silent and efficient — and 40 percent off.

It's so versatile — you can wear it as a dress, a trench and more.

Cold and flu season is colliding with the COVID pandemic. Doctors say these tools can help keep your family safe and healthy.

Women who are pregnant, as well as new moms, tell Yahoo Life that they were hesitant at first about the vaccine.

"During the pandemic, I recognized that I need alone time," the "Real" co-host says.

The 24-year-old singer said that boyfriend Shawn Mendes has been a great source of support.

Fan-favorite shampoos, conditioners, hairsprays, coloring kits...they're all marked down!

The supermodel and husband Justin Ervin are having twin boys.

For a skincare routine that will leave your skin looking and feeling its healthiest, try the Fenty Skin Start’r Set. Then store your beauty products in the Cooluli Mini Beauty Refrigerator. The post Step up your skincare game with Rihanna’s Fenty Skin line and the Cooluli Mini Beauty Fridge appeared first on In The Know.

"We can teach children what we think is right or important, without also teaching them to hate."

Some 5,000 five-star fans say this slouchy kimono sweater is everything.

Follow these five tips and tricks for better oral health.

Study finds common cancer drug reverses Alzheimer's symptoms

SlashGear 07 October, 2021 - 12:10pm

It was only in the 1980s, after all, that two Australian scientists found that Helicobacter Pylori triggers stomach ulcers. Before that, doctors had blamed the condition on stress, cigarettes and booze. Contemporary scientists considered the idea to be "preposterous", yet it eventually earned the Nobel Prize for Physiology or Medicine in 2005.

The discovery that the human papillomavirus can cause cervical cancer proved to be similarly controversial, but vaccines against the infection are now saving thousands of lives. Scientists today estimate that around 12% of all human cancers are caused by viruses.

We may be witnessing a similar revolution in our understanding of Alzheimer's disease. Lifestyle and genetic factors certainly play a role in the development of the illness. But it looks increasingly possible that some common viruses and bacteria – the kinds that give us cold sores and gum disease – may, over the long term, trigger the death of neural tissue and a steady cognitive decline. If so, infections may be one of the leading causes of the dementia.

Like the germ theories of ulcers and cancers, this hypothesis was once considered a kind of heresy – yet a string of compelling findings has sparked renewed interest in microbes' contributions to dementia. "There's a huge amount of work being done now, compared to even five years ago," says Ruth Itzhaki, an emeritus professor at the University of Manchester in the UK, who has spent three decades investigating the role of infection in Alzheimer's.

The hypothesis has inspired a clinical trial of a drug that could target the infection before it decimates the brain, radically reducing the risk of senility in old age. And there may soon be many other exciting new treatments in the pipeline.

A new understanding of Alzheimer's disease could not come soon enough. While there are many forms of dementia, Alzheimer's causes around 60-70% of cases. Globally, that amounts to around seven million people who have been newly diagnosed every year, who desperately need new treatments to slow their decline.

The disease takes its name from the German doctor Alois Alzheimer. In 1906, he noted the build-up of plaques in the brain of a 55-year-old woman, Auguste Deter, who had been suffering from memory decline, language problems and unpredictable behaviour. We now know that these plaques are made from a protein called amyloid beta, and they are thought to be toxic to brain cells and impair the synaptic connections that are important for neural signalling. The accumulation of amyloid beta plaques may also cause tangles of another protein, tau, to build within cells, which can itself lead to neuronal death, and it appears to be accompanied by widespread inflammation in the brain, which adds to the damage.

The "amyloid beta hypothesis" has inspired countless trials of drugs that aimed to break up these toxic plaques. Yet this research has ended in many disappointments, without producing the desired improvements in patients' prognosis. This has led some to wonder whether the amyloid beta hypothesis may be missing an important part of the story. "The plaques that Alzheimer observed are the manifestation of the disease, not the cause," says geriatrics scientist Tamas Fulop at the University of Sherbrooke in Canada.

Scientists studying Alzheimer's have also struggled to explain why some people develop the disease while others don't. Genetic studies show that the presence of a gene variant – APOE4 – can vastly increase someone's chances of building the amyloid plaques and developing the disease. But the gene variant does not seal someone's fate as many people carry APOE4 but don't suffer from serious neurodegeneration. Some environmental factors must be necessary to set off the genetic time bomb, prompting the build-up of the toxic plaques and protein tangles.

Could certain microbes act as a trigger? That's the central premise of the infection hypothesis.

Itzhaki has led the way with her examinations into the role of the herpes simplex virus (HSV1), which is most famous for causing cold sores on the skin around the mouth. Importantly, the virus is known to lie dormant for years, until times of stress or ill health, when it can become reactivated – leading to a new outbreak of the characteristic blisters.

While it had long been known that the virus could infect the brain – leading to a dangerous swelling called encephalitis that required immediate treatment – this was thought to be a very rare event. In the early 1990s, however, Itzhaki's examinations of post-mortem tissue revealed that a surprising number of people showed signs of HSV1 in their neural tissue, without having suffered from encephalitis.

Importantly, the virus didn't seem to be a risk for the people without the APOE4 gene variant, most of whom did not develop dementia. Nor did the presence of APOE4 make much difference to the risk of people without the infection. Instead, it was the combination of the two that proved to be important. Overall, Itzhaki estimates that the two risk factors make it 12 times more likely that someone will develop Alzheimer's, compared to people without the gene variant or the latent infection in their brain.

Itzhaki hypothesised that this was due to repeated reactivation of the latent virus – which, during each bout, invades the brain and somehow triggers the production of amyloid beta, until eventually, people start to show the cognitive decline that marks the onset of dementia. "I think there has to be repeated activation and accumulated damage to explain the long-term course of the disease."

Itzhaki says that her findings were met with a high degree of scepticism by other scientists. "We had the most awful trouble getting it published." Many assumed that the experiments were somehow contaminated, she says, leading to an illusory result. Yet she had been careful to avoid this possibility, and the apparent link between HSV1 infection and Alzheimer's disease has now been replicated in many different populations.

One paper, published earlier this year, examined cohorts from Bordeaux, Dijon, Montpellier and rural France. By tracking certain antibodies, they were able to detect who had been infected with the herpes simplex virus.  The researchers found that the infection roughly tripled the risk of developing Alzheimer's in APOE4 carriers over a seven-year follow-up period – but had no effect in people who were not carrying the gene. "The herpes virus was only able to have a deleterious effect if there was APOE4," says Catherine Helmer at the University of Bordeaux in France, who conducted the research.

To date, the most compelling evidence for the infection hypothesis comes from a large study in Taiwan, published in 2018, which looked at the progress of 8,362 people carrying a herpes simplex virus. Crucially, some of the participants were given antiviral drugs to treat the infection. As the infection hypothesis predicted, this reduced the risk of dementia. Overall, those taking a long course of medication were around 90% less likely to develop dementia over the 10-year study period than the participants who had not received any treatment for their infection.

"It's a result that is so striking, it's hard to believe," says Anthony Komaroff, a professor at Harvard Medical School and a senior physician at Brigham and Women's Hospital in Boston, who recently reviewed the current state of the research into the infection hypothesis for the Journal of the American Medical Association. Although he remains cautious about lending too much confidence to any single study, he is now convinced that the idea demands more attention. "It's such a dramatic result that it must be taken seriously," he says.

Komaroff knows of no theoretical objections to the theory. "I haven't heard anyone, even world-class Alzheimer's experts who are dubious about the infection hypothesis, give a good reason why it has to be bunkum," he adds. We simply need more studies providing direct evidence for the link, he says, to be able to convince the sceptics.

As interest in the infection hypothesis has grown, scientists have started to investigate whether any other pathogens may trigger a similar response – with some intriguing conclusions. A 2017 study suggested that the virus behind shingles and chickenpox can moderately increase the risk of Alzheimer's disease. There is also evidence that Porphyromonas gingivalis, the bacterium behind gum disease, can trigger the accumulation of amyloid beta, which may explain why poor dental health predicts people's cognitive decline in old age. Certain fungi may even penetrate the brain and trigger neurodegeneration. If the causal role of these microbes is confirmed, then each finding could inspire new treatments for the disease.

Scientists studying the infection hypothesis have also started making some headway in explaining the physiological mechanisms.

Their explanation centres on the surprising discovery that amyloid beta can act as a kind of microbicide that fights pathogens in the brain. Studies by Fulop and others, for instance, show that the protein can bind to the surface of the herpes simplex virus. This seems to entrap the pathogen with a web of tiny fibres and prevents it from attaching to cells.

In the short term, this could be highly advantageous, preventing the infection from spiralling out of control so that it poses an immediate danger to someone's life. But if the pathogen is repeatedly reactivated during times of stress, the amyloid beta could accumulate in the toxic plaques, harming the cells it is meant to be protecting.

How the APOE4 gene variant fits into this process remains to be discovered. Perhaps it changes our cells' susceptibility to an infection. Or perhaps it impairs the clean-up and repair of the neural damage after the pathogen has been deactivated. Either way, the consequence would be increased neural degeneration.

It may seem strange that humans would have evolved a defence system that could backfire in this way. But the risk of developing Alzheimer's later in life – after we've already had a chance to reproduce – would have been far less important for the survival of our species than the immediate risk of a full-blown brain infection during our youth. "If amyloid beta is evolutionarily conserved, it probably has some function that's good for the preservation of the species – and protecting against infections in the brain would certainly qualify as such a function," says Komaroff. We may now be living with the consequences of a trade-off between the immediate, short-term protection and the long-term risk of chronic illness.

During the current pandemic, some scientists have started to worry that the coronavirus could increase the risk of dementia. As scientists from Mount Sinai School of Medicine, New York warned in the Journal of Alzheimer's Disease last year: "It is possible that there may be an existing population who have become unknowingly predisposed to neurodegeneration through silent viral entry into the brain."

So far there are some signs that Covid infections can bring about neural damage. Researchers at a recent meeting of the Alzheimer's Association, for example, presented an analysis of blood samples taken from otherwise healthy patients recovering from Covid. They found elevated levels of signature chemicals that often accompany the onset of Alzheimer's disease.

This could just be another consequence of the overall assault on the body, including the increased inflammation that comes with the disease. But some animal studies and analyses of human autopsies suggest that the coronavirus can invade the brain. And laboratory experiments suggest that this infection may, in turn, trigger neural damage. In one striking study, Jay Gopalakrishnan at Heinrich-Heine-University in Dusseldorf and colleagues created a series of "cerebral organoids" – miniature, lab-grown brain tissue – and then exposed them to the virus. They saw some marked changes in the tau proteins that are associated with Alzheimer's, and increased neural death, after infection from the virus.

Such findings ring alarm bells for Fulop. "Sars-Cov-2 may act exactly as HSV-1," he proposes. Others – including Gopalakrishnan – are more cautious, however. "We have demonstrated that the virus can infect human neurons, and it can cause some sort of neuronal stress," he says. "And this may have some unexpected effects." Much more research will be necessary to assess any long-term risks for neurological disease.

Three decades after her initial investigations, Itzhaki hopes we will now see the development of more clinical trials testing new treatments, in a bid to replicate the observations of the HSV1 patients receiving antiviral medication in Taiwan.

One study in New York is already investigating the use of the anti-herpetic medication valacyclovir on patients with mild Alzheimer's disease. The participants are set to undergo a series of cognitive tests after 52 and 78 weeks. If those receiving the drug experience a slower decline in performance than those receiving a placebo, it will provide some compelling evidence for the efficacy of the treatment – and the infection hypothesis more generally. "It's the first trial of its kind," says Itzhaki.

If antiviral drugs do prove to be effective, they could offer protection to an enormous number of people. Itzhaki calculates that around 18% of people aged 30-40 have the APOE4 gene variant, and also carry a latent HSV1 infection, putting them at the much-heightened risk of Alzheimer's in the decades ahead.

The success of anti-herpetic drugs could also spur efforts to treat the many other kinds of infections that may also contribute to Alzheimer's risk in certain patients. Eventually, doctors may be able to screen people according to the many different microbes they may be carrying in their brains – and control the infections before they have time to cause serious damage.

During our conversation, Itzhaki repeatedly expresses her frustration that progress hasn't come sooner. If these treatments help a fraction of the seven million people developing Alzheimer's disease every year, they would have an enormous impact on world health. 

"After these 30 years of difficulties getting funding and getting published, it strikes me very often how many people might have benefited if these treatments had been tested earlier," she says. "I feel so strongly about that."

Natural Plant-Derived Compound Reduces Neurotoxicity in Alzheimer's Brain, Study Says

Sci-News.com 07 October, 2021 - 12:10pm

Fenchol, a plant-derived compound that gives basil its aromatic scent, can be a therapeutic approach to ameliorate Alzheimer’s disease pathology. Image credit: Jing.

Emerging evidence indicates that short-chain fatty acids (SCFAs) — metabolites produced by beneficial gut bacteria and the primary source of nutrition for cells in your colon — contribute to brain health.

The abundance of SCFAs is often reduced in older patients with mild cognitive impairment and Alzheimer’s disease, the most common form of dementia.

However, how this decline in SCFAs contributes to Alzheimer’s disease progression remains largely unknown.

Gut-derived SCFAs that travel through the blood to the brain can bind to and activate FFAR2, a cell signaling molecule expressed on neurons.

“Our study is the first to discover that stimulation of the FFAR2 sensing mechanism by these microbial metabolites can be beneficial in protecting brain cells against toxic accumulation of the amyloid-beta (Aβ) protein associated with Alzheimer’s disease,” said Professor Hariom Yadav, a researcher at the Wake Forest School of Medicine and the University of South Florida.

In the study, Dr. Yadav and colleagues studied the function of FFAR2 in the brain.

They first showed that inhibiting the FFAR2 receptor contributes to the abnormal buildup of the Aβ protein causing neurotoxicity linked to Alzheimer’s disease.

Then, they performed large-scale virtual screening of more than 144,000 natural compounds to find potential candidates that could mimic the same beneficial effect of microbiota produced SCFAs in activating FFAR2 signaling.

“Identifying a natural compound alternative to SCFAs to optimally target the FFAR2 receptor on neurons is important, because cells in the gut and other organs consume most of these microbial metabolites before they reach the brain through blood circulation,” Professor Yadav said.

The researchers narrowed 15 leading compound candidates to the most potent one.

Fenchol was best at binding to the FFAR’s active site to stimulate its signaling.

Further experiments in human neuronal cell cultures as well as Caenorhabditis elegans and mouse models of Alzheimer’s disease demonstrated that fenchol significantly reduced excess Aβ accumulation and death of neurons by stimulating FFAR2 signaling, the microbiome sensing mechanism.

When the scientists more closely examined how fenchol modulates Aβ-induced neurotoxicity, they found that the compound decreased senescent neuronal cells, also known as ‘zombie’ cells, commonly found in brains with Alzheimer’s disease pathology.

“Fenchol actually affects the two related mechanisms of senescence and proteolysis,” Professor Yadav said.

“It reduces the formation of half-dead zombie neuronal cells and also increases the degradation of (nonfunctioning) Aβ, so that amyloid protein is cleared from the brain much faster.”

In exploring fenchol as a possible approach for treating or preventing Alzheimer’s pathology, the team will seek answers to several questions.

“A key one is whether fenchol consumed in basil itself would be more or less bioactive (effective) than isolating and administering the compound in a pill,” Professor Yadav said.

“We also want to know whether a potent dose of either basil or fenchol would be a quicker way to get the compound into the brain.”

Health Stories

JCPenney